Z-Scheme over all Water Splitting on Rh/K4Nb6O17 Nanosheets Photocatalyst


ISSN 1121-7588
Hsin-Yu Lina, Yu-Lin Ye
Department of Materials Science and Engineering, National Dong Hwa University No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401,Taiwan, R.O.C.

Abstract

Developing a photocatalysis system to generate hydrogen from water is a topic of great interest for fundamental and practical importance. In this study, hydrogen production by a new Z-scheme photocatalysis water splitting system was examined over Rh modified K4Nb6O17 nanosheets and Pt/WO3 photocatalysts for H2 evolution and O2 evolution with I-/IO3 - electron mediator under UV light irradiation. The H2 evolution photocatalyst, Rh/K4Nb6O17 nanosheets with a slit like framework, was prepared by exfoliation of and proton exchange reaction. Pt/WO3 prepared by incipient-wetness impregnation method was used as O2 evolution photocatalyst. The catalysts were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy analysis (XPS), and ultraviolet-visible spectroscopy (UV-vis). These catalysts characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectroscopy (UV-Vis). In this study, we developed a facile method of preparing K4Nb6O17 nanosheets containing Rh nanoparticles. Our results show that I- concentration and pH of reaction solution have significant influences on the photocatalytic activity. The combination of Rh modified K4Nb6O17 nanosheets with Pt/WO3 achieves a very high photoactivity (H2: 4240 O2: 1622 (μmol g-1 h-1)).
€ 45,00

ico-info Address
  • Sede legale : via dei Bianchi n.19
  • 47121 - Forlì (FC)
  • email: info@technagroup.it
  • R.E.A. 297724
  • reg. Imp. Forlì-Cesena
  • Capitale sociale: EURO 20.000,00 interamente versato
© Techna Group s.r.l. - Faenza (RA) - Italy - VAT IT03368230409 Daisuke Ecommerce